数据智能

2024爱分析·数据库厂商全景报告|爱分析报告

在信创政策、技术创新和业务需求的推动下,中国数据库市场正快速增长。

2024年10月24日
  • 数据智能

 

在信创政策、技术创新和业务需求的推动下,中国数据库市场正快速增长。预计到2027年,市场规模将从2022年的403.6亿元增长至1286.8亿元,年复合增长率达26.1%。信创政策的实施加速了国产数据库的发展,特别是在金融、电信、政府等关键行业。技术进步,如AI、云计算与数据库的融合,以及大数据、IoT技术的发展,推动了数据库品类的丰富。云数据库产品和Serverless云服务等新兴技术,为用户提供了高效、灵活的数据库解决方案。

企业对数据库的需求日益多样化,推动了技术的快速迭代。金融等行业对数据库的高并发和实时性有严格要求,而制造业则需要时序数据库和库内机器学习技术来支持决策。同时,HTAP技术、数据库联邦技术、多模技术和湖仓一体技术等前沿技术,正随着业务需求的增长而逐渐成熟,满足企业在实时数据分析和决策支持方面的复杂需求。

10月24日,爱分析正式发布《2024爱分析·数据库厂商全景报告》,通过对市场的需求分析和代表厂商的能力解读,为企业厂商选型提供参考。

覆盖市场:

  实时云原生数据库、分析型关系数据库、搜索型数据库

01 研究范围定义

研究范围

在信创政策、技术创新和业务需求等因素共同驱动下,我国数据库市场保持快速发展,据大数据技术标准推进委员会测算,2022年中国数据库市场规模为403.6亿元,预计2027年将达到1286.8亿元,年复合增长率为26.1%。

政策端:信创自主可控推动数据库国产化加速

信创已经成为国家战略之一,通过发展信创产业实现信息技术领域的自主可控,保障国家信息安全是国家经济稳定发展的前提。随着大量中央及地方信创相关政策的出台,信创在“2+8+N”行业加速落地。其中数据库作为承载企业数据存储和管理的基础设施,是信创基础软件的替换重点,国产数据库市场迎来加速发展的黄金时期。

在信创政策推动下,以金融、电信、政府、制造、交通为代表的行业对国产数据库需求旺盛,未来,随着信创在更多行业的落地,国产数据库厂商将迎来巨大的市场空间,这也为国产数据库突破核心技术、储备技术人才、丰富产品形态提供发展契机。

技术端:AI、云计算与数据库融合加深,大数据、IoT技术催生数据库品类日益丰富

随着大模型落地加快,大模型与数据库的融合场景愈加成熟,如将生成式AI技术与数据库结构设计、架构设计、数据分析挖掘等场景结合,能有效提升数据库开发、运维和分析效率,正成为数据库厂商智能工具开发新方向。

上云是企业数字化转型的重要战略。为适应云应用的研发需求,数据库厂商正联合云厂商推出云数据库产品,以为用户提供高效、便捷的数据库服务,如基于云计算的数据库即服务(DBaaS),支持用户在云端访问和使用数据库系统,可提供灵活的数据库管理解决方案。企业使用DBaaS,无需购买或配置数据库,能显著降低企业成本。进一步,云计算中的无服务架构(Serverless)技术和服务模式逐渐成熟,使具备Serverless服务的云原生数据库成为厂商重点布局。Serverless云服务基于计算与存储分离的理念,具备自动扩缩容、按需付费的特点,能有效解决用户业务扩张数据库扩容问题,提升用户体验。

此外,大数据、IoT技术的快速发展,使企业数据体量呈爆炸式增长,同时带来异常丰富的数据类型,如时序、GIS、图像、视频、文本等数据类型日益丰富,推动图数据库、时序数据库、时空数据库、文档数据库等各种专用数据库涌现并快速发展。

需求端:企业场景多元化促进数据库技术更新迭代

差异化的业务场景决定了企业对数据库类型和能力要求各不相同,也驱动数据库性能和技术加速突破。如金融行业业务具有连续性,对数据一致性要求极高,且分析场景日益复杂,因此会同时部署关系型数据库和分析型数据库,对两类数据库均要求数据库具备高并发和实时性,同时能灵活满足业务增长的扩容需求。制造业中机器设备和传感器采集了大量的时间序列数据,需要实时提供故障诊断、需求预测、产品优化等决策支持,因此对时序数据库、库内机器学习等技术有强烈需求。

此外,实时数据分析和决策支持场景下同时支持事务和分析的HTAP技术、适应多套业务系统联合分析场景的数据库联邦技术、满足多类型数据处理需求的多模技术以及同时支持对大数据进行BI分析和机器学习预测的湖仓一体技术等多种数据库前沿技术正随着业务应用落地逐渐完善成熟。

本次报告中,爱分析将数据库市场从上至下划分为数据库服务、数据库运维管理产品、数据库产品三层。数据库服务包括咨询规划服务、实施部署服务、运维运营服务;数据库运维管理产品包括数据库云管理、数据迁移备份、数据库开发测试、数据库监控和性能分析工具等;数据库产品包括超融合数据库、混合型关系数据库(HTAP)、事务型关系数据库、分析型关系数据、实时云原生数据库、图数据库、搜索型数据库、向量数据库和时序数据库等多个细分场景。