人工智能

北京市科委权威发布:金融、医疗、文化教育类企业落地大模型的研判和建议

《北京市人工智能大模型行业应用分析报告》发布。

2024年05月14日
  • 教育
  • 医疗
  • 人工智能
  • 金融

 

在北京市科学技术委员会、中关村科技园区管理委员会的指导和组织下,由北京信息科技发展中心、北京爱分析科技有限公司等单位编写完成《北京市人工智能大模型行业应用分析报告》,展现北京市大模型相关技术产品在各领域各行业的应用发展态势,并提出有关建议,为未来决策提供参考。

今日先行发布报告的“金融、医疗、文化教育类企业落地大模型的研判和建议”部分,以供企业用户前瞻。

金融领域

金融领域应用大模型的市场驱动力较强,且结合点较多。金融属于高工作效率可以带来高回报的行业,金融机构为了追求更高的工作效率,更及时的决策分析,往往愿意为能显著提高效能的大模型产品买单。从实际落地角度来看,大模型可以和金融机构现有的软件系统、模型较好融合,相辅相成。目前,金融领域应用主要集中在保险售前助理、智能投研助理、招股书生成编写、智能研报合规审查、智能客服等方向。除此以外,部分企业深挖需求,带来了新颖的应用场景方向,如大模型保险理赔受理、大模型智能数据治理、个人/企业信用偿贷能力审查监控等,大模型在金融领域的商业价值将会逐步释放。除商业价值之外,大模型在金融领域的社会价值也开始显露,某银行将大模型与消费者权益保护审查平台结合,利用大模型对理财产品宣传材料实现自动生成审查意见,推荐优秀相似案例作为参考,辅助审查人员开展审查,能有效解决基层审查能力不足的问题,银行方审查速度和审查准确性得到大幅提升。
大模型在金融领域落地尚面临行业监管和算力资源等诸多挑战。金融行业监管严格,对大模型的输出结果准确性、安全性、合规性都具有较高要求,且金融机构数据隐私性较强,难以在机构间共享,大模型产品往往需要进行私有化训练及部署,这对于金融机构的算力资源提出新的挑战。同时,金融机构对私有化部署的依赖会引发大模型知识持续学习等问题。
在金融领域,有三条发展建议。